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Abstract. Hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane 

(CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks.  As a result, 

the reasons for variations in OH and the resulting CH4 lifetime (𝜏"#$), both between models and in time, are difficult to 

diagnose.  We apply a neural network (NN) approach to address this issue within a group of models that participated in the 40 

Chemistry-Climate Model Initiative (CCMI).  Analysis of the historical specified dynamics simulations performed for CCMI 
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indicates that the primary drivers of 𝜏"#$ differences among ten models are the flux of UV light to the troposphere (indicated 

by the photolysis frequency JO1D) due mostly to clouds, mixing ratio of tropospheric ozone (O3), the abundance of nitrogen 

oxides (NOx≡NO+NO2), and details of the various chemical mechanisms that drive OH.  Water vapor, carbon monoxide 

(CO), the ratio of NO:NOx, and formaldehyde (HCHO) explain moderate differences in 𝜏"#$, while isoprene, CH4, the 45 

photolysis frequency of NO2 by visible light (JNO2), overhead O3 column, and temperature account for little-to-no model 

variation in 𝜏"#$.  We also apply the NNs to analysis of temporal trends in OH from 1980 to 2015.  All models that 

participated in the specified dynamics historical simulation for CCMI demonstrate a decline in 𝜏"#$ during the analysed 

timeframe.  The significant contributors to this trend, in order of importance, are tropospheric O3, JO1D, NOx, and H2O, with 

CO also causing substantial interannual variability in OH burden.  Finally, the identified trends in 𝜏"#$ are compared to 50 

calculated trends in the tropospheric mean OH concentration from previous work, based on analysis of observations.  The 

comparison reveals a robust result for the effect of rising water vapor on OH and 𝜏"#$, imparting an increasing and 

decreasing trend of about 0.5 % decade–1, respectively.  The responses due to NOx, O3 column, and temperature are also in 

reasonably good agreement between the two studies, though a discrepancy in the CH4 response highlights a need for further 

examination of the CH4 feedback on the abundance of OH. 55 

1  Introduction 

Hydroxyl radical (OH) is a key species of interest for numerous tropospheric chemistry studies over the past several decades.  

As a result of its role as the primary daytime oxidant in the lower atmosphere, OH determines how quickly many 

tropospheric gases and aerosols degrade or transform chemically.  Notably, loss of atmospheric methane (CH4) is dominated 

by its reaction with OH.  Uncertainties in the abundance of OH at the global scale, coupled with source terms of CH4 that are 60 

difficult to quantify, have driven disagreement in the causes of recent variations in the CH4 growth rate (Nisbet et al., 2019; 

Turner et al., 2019).  As a key element in the CH4 budget, tropospheric OH must be studied further to clarify its present-day 

abundance as well as its variability over time. 

Numerous studies have sought to constrain the OH abundance and resulting CH4 lifetime (𝜏"#$) using observations, global 

atmospheric models, and combinations of the two.  Historically, chemical inversion of methyl chloroform (MCF: CH3CCl3) 65 

comprised the primary method capable of gleaning information about global-scale OH burdens (Bousquet et al., 2005; Krol 

et al., 1998; Lovelock, 1977; Montzka et al., 2000; Prinn et al., 1987; Ravishankara and Albritton, 1995; Spivakovsky et al., 

2000), though additional species that are lost by reaction with OH were also tested for this purpose (Jöckel et al., 2002; 

Liang et al., 2017; Miller et al., 1998; Nisbet et al., 2016, 2019; Singh, 1977; Weinstock and Niki, 1969).  Models have 

likewise been relied upon to derive tropospheric OH abundance and its evolution.  Notably, the Atmospheric Chemistry and 70 

Climate Model Intercomparison Project (ACCMIP) generated both historical (Naik et al., 2013) and future (Voulgarakis et 

al., 2013) simulations from numerous chemistry-climate models, revealing large discrepancies not only in present-day 𝜏"#$ 
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(with values ranging from 7.1 to 14.0 years) but also in how 𝜏"#$ is expected to vary given common emissions scenarios.  

Note that, here and throughout, 𝜏"#$ refers to the lifetime of CH4 due to reaction with tropospheric OH only.  Most recently, 

the confluence of observations with advanced modelling techniques have enabled sophisticated analyses of global OH 75 

(Holmes et al., 2013; McNorton et al., 2016; Prather et al., 2012; Rigby et al., 2017; Turner et al., 2017) .  Despite the advent 

of numerous observing systems for species with some bearing on OH chemistry in the last several decades, it is widely 

acknowledged that current observations are insufficient to unambiguously derive current trends in OH (Nisbet et al., 2019; 

Prather & Holmes, 2017; Turner et al., 2019, 2017). 

While global models are insufficient for clarifying the outstanding questions regarding OH and 𝜏"#$ on their own, they can 80 

serve as valuable testbeds in which to evaluate the factors influencing OH chemistry.  The dominant reactions responsible 

for producing, cycling, and sequestering OH (see, e.g., Spivakovsky et al. (2000)) are well characterized and represented, to 

varying degrees of explicitness, in modern chemical mechanisms.  Despite general consensus on the immediate drivers of 

OH chemistry, large differences in OH can manifest due to infrequently diagnosed differences in, e.g., ultraviolet (UV) flux 

to the troposphere (needed to initiate ozone (O3) photolysis for subsequent OH primary production) due to variations in 85 

cloud parameterizations and radiative transfer codes.  Similarly, differences in the representations of volatile organic 

compound (VOC) oxidation pathways can influence the extent to which OH is recycled following reactions with 

hydrocarbons.  Such nuances in the chemistry of OH make OH differences between models notoriously difficult to attribute.  

With properly coordinated simulations and sufficient model output, however, we have demonstrated that the barriers posed 

by complex, non-linear chemistry can be overcome. 90 

The multi-dimensional system that describes OH behaviour is well-suited for study via machine learning approaches.  We 

have previously demonstrated the utility of neural networks (NNs) for quantifying differences in OH among a small group of 

chemical transport models (CTMs), which rely on the specification of meteorological conditions (Nicely et al., 2017).  Other 

groups have similarly shown the promise of machine learning techniques to better parameterize within models such complex 

processes as convection (Gentine et al., 2018), radiative transfer (Krasnopolsky et al., 2009), ozone production (Nowack et 95 

al., 2018) and deposition (Silva et al., 2019), and to replace the numerical integrators that simulate chemistry within models 

(Keller and Evans, 2019).  The community continues to develop best practices for harnessing the power of machine learning 

for applications in atmospheric science.  We build here on the specific application of NNs to better understand model 

representations of OH. 

In this study, we apply an NN approach to quantifying the causes of OH differences to the large group of models that 100 

participated in the Chemistry-Climate Model Initiative.  We repeat our earlier analysis that identifies the primary drivers of 

OH and 𝜏"#$ differences among model simulations conducted with specified dynamics, for a single year.  We then expand 

the approach to study temporal variations in OH for 1980-2015, allowing for attribution of trends and interannual variability 
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in 𝜏"#$ to specific parameters.  Finally, we compare the derived trends in OH simulated by the CCMI models to trends 

derived from a previous observation-based study. 105 

2 Model Simulations 

The Chemistry-Climate Model Initiative (CCMI), carried out as an official activity of the International Global Atmospheric 

Chemistry (IGAC) and the Stratospheric Processes And their Role in Climate (SPARC) communities, seeks to further inter-

model evaluation of chemistry-climate models (Eyring et al., 2013).  Phase 1 of CCMI has designed a set of simulations, 

covering both historical and future timeframes, with prescribed emissions inventories such that the interactive chemistry and 110 

its interplay with dynamical and radiative processes can be robustly compared between models.  The analysis presented here 

focuses on one simulation, the historical specified dynamics (SD) simulation from 1980 to 2010 (REF-C1SD) (Hegglin and 

Lamarque, 2015; Morgenstern et al., 2017).  Details of the emissions inventories recommended for this simulation can be 

found in Eyring et al. (2013) .  We have also performed the inter-model comparison portion of this analysis (Section 3.2) for 

the historical free-running simulation conducted from 1960 to 2010 (REF-C1).  However, since a comprehensive 115 

examination of OH within the REF-C1 simulations was conducted by Zhao et al. (2019) , those results are presented in the 

Supplement.  We also include output from models that are not formal participants in CCMI, but provided simulations 

comparable to those being used here.  These additional models are described below.  Monthly mean fields are used for the 

various chemical, physical, and radiative parameters necessary for evaluating OH, described in Section 3.  We analyse all 

models that include and provided output for the complete list of these variables. 120 

Models that participated in the REF-C1SD simulation were nudged toward reanalysis meteorological fields such that 

dynamical conditions are represented with historical accuracy.  The details of how nudging – of the winds, temperature, and 

sometimes pressure and water vapor fields – is conducted can be found in Morgenstern et al. (2017) , Table S30.  Models 

that produced REF-C1SD simulations for CCMI and provided the necessary output to complete this analysis include: 

CAM4-Chem (Tilmes et al., 2016), EMAC-L47MA, EMAC-L90MA (Jöckel et al., 2016), MOCAGE, MRI-ESM1r1, and 125 

WACCM.  For both configurations of the EMAC model, the simulations that included nudging of wave-0 temperatures were 

used (Jöckel et al., 2016). 

Four models also contributed SD-type simulations to be analysed alongside the REF-C1SD CCMI simulations.  The 

Goddard Earth Observing System (GEOS) model (Molod et al., 2015) conducted a “Replay” run, meaning the general 

circulation model computes its own meteorological fields for a 3 hour simulation period, then calculates the increment 130 

necessary to match a pre-existing reanalysis data set, in this case the Modern Era Retrospective Analysis for Research 

Applications version 2 (MERRA-2).  The increment is then applied as a forcing to the meteorology at every time step during 

a second run of the same simulation period.  This simulation includes full interactive tropospheric and stratospheric 

chemistry from the Goddard Modeling Initiative (GMI) chemical mechanism (Nielsen et al., 2017) with output for years 
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1980-2018 at 0.625° × 0.5° horizontal resolution and 72 vertical levels (Orbe et al., 2017; Stauffer et al., 2019; Wargan et 135 

al., 2018).  This simulation is referred to as “GEOS Replay.”  Additionally, three chemical transport models (CTMs), which 

directly rely on established meteorological fields such as MERRA-2 rather than calculate them, provided output used in this 

analysis.  The OsloCTM and GEOS-Chem CTMs output all required variables for year 2000, while the GMI CTM (Strahan 

et al., 2013) simulated the full 1980-2015 period.  We note that, while the GEOS Replay simulation described above used the 

GMI chemistry package, all discussion of the simulation from “GMI” refer to the separate, standalone CTM.  While CTMs 140 

read in and use external meteorological fields rather than “nudging” or “replaying” internally calculated fields, we expect 

them to similarly represent realistic meteorological conditions for a given year.  As such, we group them with the REF-

C1SD simulations from CCMI, bringing the total number of SD-type simulations analysed to ten. 

3 Methods 

3.1 Neural network setup 145 

Neural networks are generated to mimic the tropospheric chemistry with respect to OH for a given model following the 

method outlined in Nicely et al. (2017) .  Briefly, one NN is trained for one model, for one simulation month at a time.  To 

reduce computational demands, we establish NNs for four months, one for each season: January, April, July, and October.  

Separate NNs are trained for the SD (main text) and free-running (Supplement) simulations, and all training is performed 

with output from year 2000.  The training process adjusts weighting factors such that mixing ratios of OH are predicted 150 

accurately when 3-D fields of the following variables are input to the NN: pressure, latitude, temperature (T), ozone (O3), 

specific humidity (H2O), methane (CH4), the sum of nitrogen oxide and nitrogen dioxide (NOx≡NO+NO2), the ratio 

NO:NO2, carbon monoxide (CO), isoprene (“ISOP”=C5H8), formaldehyde (HCHO), the photolysis frequency of NO2 

(“JNO2”), the photolysis frequency of O3 to excited state O(1D) (“JO1D”), and stratospheric O3 column (“O3 COL”).  Note 

that many of the inputs covary with one another depending on the chemical regime or meteorological conditions.  A strength 155 

of the NN approach is that the inputs chosen need not be independent of each other.  All chemical species are input to the 

NN as unitless mixing ratios, except for CH4, which is normalized by the maximum tropospheric value.  This normalization 

enables direct comparison of CH4 distributions between models, despite the fact that the use of boundary conditions 

sometimes results in substantially different amounts of CH4 between models.  (While the CCMI models generally used 

roughly consistent boundary conditions, the additional simulations that were not formally part of CCMI exhibit CH4 160 

concentrations mutually exclusive to those in the CCMI models.)  Pressure is provided in units of hPa, temperature in K, 

photolysis frequencies in s–1, and O3 COL in Dobson Units (DU).  Three of the inputs – HCHO, NO:NO2, and O3 COL – 

have been introduced to this analysis since Nicely et al. (2017), due to availability of output from all models and to the added 

information they encompass that may be relevant for OH chemistry.  For instance, having knowledge of the partitioning of 

NOx likely enables one to more accurately predict OH quantities compared to knowing just the total abundance of NOx.  165 

Likewise, the introduction of O3 COL is somewhat redundant when its primary effect on OH is through attenuation of 
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ultraviolet (UV) flux to the troposphere, which is already encompassed by the input JO1D.  However, JO1D is also altered by 

other factors such as clouds, which cannot as easily be included as an input for this analysis (some models provide 2-D cloud 

fraction fields, others output 3-D fields, and still others do not give any indication of their cloud fields).  Whether strong 

differences in JO1D are caused by clouds or overhead O3 should be clarified by inclusion of O3 COL as an input. 170 

The neural network architecture is consistent with that of Nicely et al. (2017)  and is shown in Figure 1.  However, the 

number of computational nodes was doubled from 15 to 30 given the availability of more powerful computing resources.  

Two hidden layers each containing 30 nodes provided strong performance of the NN in reproducing the OH mixing ratios 

from a given model.  The training process and evaluation metrics are carried out as in Nicely et al. (2017); a detailed 

explanation of all procedures and methods may be found therein. 175 

3.2 Inter-model comparison approach 

Once NNs are established for each model, an analysis is conducted to quantify the OH and 𝜏"#$ differences attributable to 

individual input terms.  To accomplish this, each model, A, is paired with another model, B, such that one input to the NN of 

model A is substituted with the same field from model B.  All other inputs are held fixed, using fields from model A for year 

2000.  Any resulting changes in OH can then be directly attributed to the substituted variable.  The “swaps” that are 180 

performed in this manner undergo a process we refer to as “extrapolation control,” which restricts the substituted variable 

from leaving the range of values over which the native model’s NN was trained.  If, e.g., O3 is being substituted from 

CAM4-Chem into the GMI NN, we not only check that a given CAM4-Chem O3 value lies within the minimum and 

maximum GMI tropospheric values, but also that the GMI value of CO at that gridpoint can be associated with the new 

CAM4-Chem O3 value.  This check is performed across all variables, and essentially prevents the substitutions from 185 

venturing too far outside of the chemical regimes simulated within the native model.  In the case that a swapped variable 

exceeds the acceptable range of values, it is revised up or down accordingly.  We find that extrapolation control is critical to 

achieve meaningful results with the NN method, though it necessarily forces the attributed changes in OH and 𝜏"#$ to be 

conservative estimates. 

Metrics used to evaluate the results of variable swaps include tropospheric OH integrated columns for visualization and 190 

changes in 𝜏"#$ for a globally-summed quantity.  Tropospheric columns are integrated vertically and weighted by the mass 

of CH4 and the temperature-dependent rate constant of reaction between OH and CH4.  The global mean lifetime of CH4 is 

found using Eq. 1: 

𝜏"#$ =
∑/012×3"#$

∑[5#]×789:;9$×/012×3"#$
 ,          (1) 
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where Mair is the mass of air within a grid box, brackets denote number density, χ denotes mixing ratio, kOH + CH4 is the 195 

reaction rate constant for the OH + CH4 reaction calculated for each grid box temperature, and summations are performed 

over all tropospheric model grid boxes.  This formulation is equivalent to the standard lifetime calculation of burden divided 

by loss rate, adapted to the quantities most directly related to model outputs available (Chipperfield et al., 2014).  Again, we 

note that this is strictly the atmospheric lifetime of CH4 with respect to loss by tropospheric OH.  If one additionally includes 

all stratospheric grid boxes within the above summation, annual average lifetimes of almost all models consistently increase 200 

by ~1.2 years. 

3.3 Time series evaluation approach 

A new element of this analysis applies the already-established NNs of each model to examine the time evolution of OH over 

several decades of simulation.  For this, we focus on the REF-C1SD simulation set, as it contains the most realistic 

representation of historical emissions and meteorological conditions, and thus is most likely to resemble true OH variations.  205 

All models that provided SD-type simulations as described in Sections 2.2 and 2.3 are included, with the exception of 

GEOS-Chem and OsloCTM, both of which only provided output for year 2000.  Using a similar swapping technique as 

described in Section 3.2, the NN for a given model is used to quantify the effect of substituting individual inputs from 

different years.  No inter-model substitutions are conducted; instead, a single input is taken from the various years of the 

simulation (1980-2015) while all other inputs are fixed to their 2000 values.  Because all swaps are performed on an intra-210 

model basis, extrapolation control is largely unnecessary, since that model’s chemical regimes do not vary drastically from 

the original year 2000 training output.  However, we do see some instances, noted in Section 4.3, of anomalous behaviour in 

the 𝜏"#$ results because some variables undergo significant changes, particularly between the 1980s and training year 2000.  

Overall, the NN technique should be sufficiently generalizable to provide meaningful results even when using inputs lying 

modestly outside of the range of training values.  Robustness of the results is demonstrated by the emergence of several 215 

consistent features between the eight models examined, as discussed in Section 4. 

4 Results and Discussion 

4.1 Native model and NN performance 

Figure 2 shows values of 𝜏"#$ found for all models that produced SD-type simulations.  Annually and globally averaged 

lifetimes vary from 6.59 years (OsloCTM) to 8.41 years (GMI).  All models exhibit the expected seasonal variation in 𝜏"#$, 220 

with minimum values in the Northern Hemisphere (NH) summer months due to higher OH at this time of year.  Specifically, 

the seasonal variation in the global mean is a result of greater anthropogenic influence in the NH and resulting increases in 

concentration of two OH precursors: O3 and NOx. 
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An example of NN performance is shown for the January WACCM model in Figure 3, relative to the native model OH 

fields.  Tropospheric OH columns are shown for the model and NN alongside the absolute value of the difference between 225 

the two.  In general, the NNs from all models show similar magnitudes and spatial patterns in their calculated OH field, with 

errors somewhat randomly scattered and maximizing locally to values of ~10% of the total column value.  Performance of 

all model NNs for year 2000 is strong, with values of 𝜏"#$calculated from the NN-generated OH field within 0.006 years of 

the parent model’s 𝜏"#$ on average.  The maximum error in 𝜏"#$, an overestimate by 0.012 years, occurs for the MRI-

ESM1r1 model in the month of January.  Performance is generally poorest in boreal winter, with average offsets in 𝜏"#$ of 230 

0.007 years, and strongest in boreal summer, for which the mean bias is only 0.004 years.   

4.2 Inter-model comparison 

The inter-model comparison component of this analysis can be understood fundamentally by the OH and 𝜏"#$ differences 

generated by substituting input fields between models.  An example of the OH column and 𝜏"#$ changes that are calculated 

through individual variable swaps is shown in Figure 4.  The two models with the highest and lowest values of 𝜏"#$, GMI 235 

and OsloCTM, respectively, are chosen for this example.  Swaps performed between the two models for the month of 

January reveal that local O3, JO1D, HCHO, and NOx account for the largest differences in 𝜏"#$ for this particular model 

pairing.  A complete budgeting of the changes in 𝜏"#$ attributable to all inputs for GMI and OsloCTM is shown in Table 1.  

Note that the values of 𝜏"#$ shown in Table 1 correspond to lifetimes for the month of January rather than annual averages 

and so will differ from the lifetimes noted at the beginning of Section 4.1. 240 

It is worth discussing several features that are evident in the visualized OH changes shown in Fig. 4.  First is the spatial 

distribution of the OH variations.  Depending on how the sink or source term undergoing the swap affects OH chemistry, the 

strongest impacts may occur in localized areas or may distribute evenly over the globe.  For instance, varying local O3 and 

NOx (Fig. 4a, b and 4g, h, respectively) exert the greatest influence on OH over the continental climatological tropics.  This 

is likely a result of the anthropogenic or biomass burning emissions sources, which limit the largest differences in O3 and 245 

NOx between the two models to areas proximate to the South American, African, and Indonesian source regions for the 

month of January.  The OH changes resulting from substitutions of the inputs JO1D and HCHO, however, are distributed 

over oceans as well as over land masses and, in the case of HCHO, are strongest in remote marine regions.  This pattern is 

common for species that influence OH chemistry through mechanisms that are largely independent of local emissions.  In the 

case of HCHO, its role as a secondary source of OH through CH4 oxidation is relatively more important in the absence of 250 

large VOC concentrations, thus its stronger influence is seen away from terrestrial vegetation. 

The second feature to note in Fig. 4 is the symmetry between input swaps in opposing directions.  In other words, the swap 

of an input from OsloCTM into the GMI NN generally yields OH column and 𝜏"#$ changes that are equal but opposite to the 
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changes resulting from use of a GMI input in the OsloCTM NN.  With few exceptions, almost all regions of OH increase 

(red) in one model’s NN are matched by OH decreases (blue) in the other model’s NN in Fig. 4.  The changes in 𝜏"#$ are 255 

correspondingly similar in magnitude but opposite in sign.  This behaviour is expected because a swap that may, e.g., 

increase an OH precursor and subsequently cause an increase in OH for one model will manifest as a decrease in that same 

precursor when the substitution occurs in the NN of the other model.  While this pattern occurs for the vast majority of cases 

across all model pairings and swaps performed for this analysis, there are instances when symmetry is not maintained.  This 

could happen for two reasons.  First, the sensitivities of the two models to a particular change in an OH precursor or sink 260 

could differ.  For example, one model may be sensitive to an increase in CH4, causing OH concentrations to drop in 

response.  Another model may incorporate buffering effects that allow OH to be recycled following its reaction with CH4, 

causing it to be less sensitive to the same change in CH4.  We refer to these variations in model sensitivities as chemical 

mechanism differences, as they are most likely a result of the chemical reactions, species representations, or reaction rates 

implemented within a model’s chemical mechanism.  The second explanation for lack of symmetry in the OH response to a 265 

model swap is a forced asymmetry in the swapped inputs themselves, imposed by the extrapolation control technique 

described in Section 3.2.  It is possible that the swap of an input in one direction, i.e. from Model A into Model B, could 

proceed with no alteration to the substituted variable, while the swap in the other direction, i.e. from B to A, results in the 

variable lying outside the trained range of Model A.  The extrapolation control process will revise the substitute variable 

field from Model B, such that the difference between it and the native field from Model A is lessened.  As such, the first 270 

swap into the NN of Model B will yield a larger magnitude change in the input as compared to the swap into the NN of 

Model A.  The impact of these factors is indirectly quantified through a remainder term that falls out of a full budgeting 

analysis, described below. 

A third consideration in interpreting the information presented in Fig. 4 is the conditions that must be met in order for a large 

change in OH to manifest through this analysis.  First, the two models between which a swap is conducted must exhibit 275 

differences in the parameter of interest.  Should the two models exhibit, e.g., very similar O3 fields, then swapping one 

model’s O3 with the other’s will produce little difference in the NN-calculated OH.  Second, the model must have some OH 

sensitivity to the variable being swapped.  If a model is insensitive to changes in CH4, swapping in a drastically different 

CH4 field may not cause a perceivable difference in OH.  Therefore, the absence of an OH response does not necessarily 

mean that input fields are similar between models.  Conversely, the existence of large OH changes indicates that differences 280 

in the swapped input field exist between the two models and that the native model demonstrates a dependence of OH on that 

input variable. 

The final point of interest in Fig. 4 is the general consistency in the signs of OH and 𝜏"#$	changes for each model.  The 

substitutions of all four variables generally cause an increase in OH within the GMI NN (and corresponding decrease in 

𝜏"#$) and a decrease in OH (increase in 𝜏"#$) within the OsloCTM.  This feature is most pronounced for this particular pair 285 
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of models due to our reasoning for choosing them: they exhibit the largest difference in 𝜏"#$ among our group of 10 models.  

Because the native GMI model has a longer 𝜏"#$ value compared to OsloCTM, it makes sense that incorporation of 

OsloCTM’s various OH precursor and sink fields into the GMI NN will tend to decrease the GMI 𝜏"#$, bringing it into 

closer agreement with that of OsloCTM.  This characteristic points to the utility of this analysis as a budgeting tool for 

quantifying the cause of the difference in 𝜏"#$ between two models.  The 𝜏"#$ accounting for the GMI and OsloCTM set of 290 

swaps conducted for January is shown in Table 1.  When considering all 12 variable swaps that were performed, the NN 

analysis more than explains the original gap in 𝜏"#$ between the two models.  The GMI January lifetime of 9.24 years is 

decreased to 6.71 years (𝜏5=>? + Δ𝜏) after summing all Δ𝜏 values, while the OsloCTM lifetime is increased from 7.18 years 

to 9.48.  This budgeting rarely provides a perfect accounting of the 𝜏"#$ gap due to the same reasons that give rise to 

asymmetric OH responses to a given swap: chemical mechanism differences and asymmetric swaps of inputs due to 295 

extrapolation control.   As a result, a remainder term, found as the difference between the other model’s 𝜏5=>?  and the 

present model’s 𝜏5=>? + Δ𝜏, is attributed to these factors.  This term is listed in the last row of Table 1 with the label 

“Mech.” 

Results from analysing individual model pairs reveal a multitude of insights regarding idiosyncrasies in emissions of, global 

distributions of, and OH sensitivities to the various input parameters.  These results, available at our FTP site provided in 300 

Data Availability, may be especially useful to the reader with an interest in a particular species or model.  However, with 

over 4000 plots (12 species × 10 models × 9 sub models × 4 months = 4320) and 180 𝜏"#$ budget tables generated, it is 

beyond the scope of this paper to highlight and explain every interesting feature.  Instead, we aggregate the results across all 

models to identify some primary conclusions.  Figure 5 shows the change in 𝜏"#$ for a specific model and substituted input 

variable, averaged over all nine pairings.  For example, the data point shown for CAM4-Chem JO1D is calculated from the 305 

nine Δ𝜏"#$ values obtained when swapping the JO1D fields from the other nine models into the CAM4-Chem NN.  The 

circular point represents the mean of those nine values, while the whiskers indicate one standard deviation about the mean.  

Aggregate results shown in this manner are compiled both for individual months (available on the FTP site noted above) as 

well as for annually averaged output.  The latter is calculated as the average of the four monthly mean and standard deviation 

values, and is shown in Fig. 5. 310 

As with the individual OH tropospheric column change plots (Fig. 4), numerous conclusions can be drawn by studying the 

aggregated results in Fig. 5.  The method for reading the data in Fig. 5 is demonstrated in the following example.  The mean 

Δ𝜏"#$ value attributable to JO1D for the WACCM model is +0.99 years.  This indicates that use of JO1D fields from other 

models causes 𝜏"#$ to increase by ~1 year, meaning the native JO1D field from WACCM imparts a low bias to 𝜏"#$ of 1 

year, relative to the other models.  A low 𝜏"#$ would result from OH concentrations being too high.  Since OH and JO1D are 315 

positively correlated (i.e., JO1D can be thought of as a source for OH) the too-high OH is an indication of too-high JO1D.  In 
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general, positive values of Δ𝜏"#$ correspond to relative high biases in input parameters that are source terms for OH and to 

low biases for species that instead serve as sinks.  This reasoning is less straightforward for species such as HCHO, which 

can both produce and consume OH, while it is also produced by OH-initiated oxidation.  We stress that these comparisons 

are strictly relative to other models, not to any observation or other indication of truth.  So, points that appear as outliers in 320 

Fig. 5 should not necessarily be interpreted as an erroneous result, but rather should be considered as an area for further 

examination. 

The ordering of variables along the x-axis of Fig. 5 denotes the average magnitude of Δ𝜏"#$ values across all models, with  

parameters on the left accounting for the largest 𝜏"#$ differences.  As such, JO1D is the largest driver of OH differences in 

the CCMI SD model simulations, followed by local O3 and NOx.  The subsequent variables H2O, CO, the NO:NOx ratio, and 325 

HCHO cause moderate variations in tropospheric OH, while ISOP, CH4, JNO2, O3 COL, and T are not responsible for inter-

model spread in 𝜏"#$.  We note that T differences between the SD simulations are likely limited due the meteorological 

constraints imposed on the models.  However, examination of the free-running simulations, discussed in the Supplementary 

Material, also shows practically no impact of T on OH.  Thus, we conclude that the effect of temperature on OH chemistry is 

likely indirect, acting through pathways embodied by other variables, such as H2O and species that exhibit strongly 330 

temperature-dependent reaction rates.  Finally, the Mech. term, described in the discussion of Table 1, appears on the far 

right, indicating its origins as a remainder term from the budget analysis of individual model pairs.  The magnitudes of Δ𝜏"#$ 

values attributed to chemical mechanism differences and asymmetric swaps between models are large enough to consistently 

rank the Mech. term third, between O3 and NOx, in terms of importance for OH in this analysis.  Especially in model 

simulations conducted with common emissions inventories, we expect some of the disparity in a short-lived species like OH 335 

to emerge from differences in chemical mechanism implementations.  In other words, when responses in OH to a given 

change in a source or sink term differ between two models, the remainder term will increase, representing variations in the 

sensitivity of OH that presumably arise due to the two different implementations of the chemical mechanism.  It is possible 

that other factors are represented by this term; e.g., other chemical species that influence OH chemistry but are not 

considered in the NN analysis could contribute to the Mech. term.  However, previous analysis using a 0-D chemical box 340 

model as a “standard” mechanism in Nicely et al. (2017)  suggested a correlation between actual biases in OH imparted by a 

given model’s chemical mechanism and the remainder term resulting from the NN analysis.  Therefore, we have some 

confidence that the Mech. term is meaningful, though significant further study would be required to parse the actual 

mechanistic differences responsible for imparting bias in OH calculations. 

Significant inter-model differences in the largest driver of 𝜏"#$ spread, JO1D, could arise from two possible sources.  The 345 

amount of solar UV light penetrating down to the troposphere is largely dictated by the stratospheric column O3 amount.  

However, the differences in total O3 column are generally small and insufficient to cause the variations in JO1D seen among 

the CCMI models.  Rather, JO1D likely varies to a great extent due to differences in cloud cover, and dissimilar treatments of 
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clouds within model photolysis codes.  Supplementary Figure S1 highlights this effect by showing the ratio of JO1D at the 

surface to JO1D in the upper troposphere (UT) for each model.  The relatively small column amounts of O3 within the 350 

troposphere should account for very little absorbed UV light, making it much more likely that deviations in this ratio from 

1.0 are driven by scattering due to clouds and possibly aerosols.  The fact that models show large spatial differences in this 

ratio is a strong indication that clouds underlie the model differences in JO1D. 

While the model differences in JO1D, O3, NOx, and chemical mechanisms appear to drive the bulk of the 𝜏"#$ spread among 

this group of CCMI models, we emphasize that individual models may not adhere to these conclusions.  As such, any efforts 355 

to improve a particular model should instead focus on the results specific to that model.  For instance, HCHO plays a very 

small role in describing inter-model differences in OH on average, but for the OsloCTM model, HCHO is a much more 

important factor.  Thus, we refrain from offering an across-the-board solution for remedying the large model spread in 𝜏"#$ 

and instead suggest a more individualized approach of studying plots such as those shown in Fig. 4 for more spatially and 

temporally resolved information.  Visualizations of all model swaps, for all months and species, are available at our FTP site 360 

provided in Data Availability for this purpose. 

There are several other qualifications to note when considering the results of the inter-model comparison.  One is the 

negating effect between the JO1D and tropospheric O3 variables.  Many, but not all, model Δ𝜏"#$ values for JO1D in Fig. 5 

are opposite in sign to the Δ𝜏"#$ values attributed to O3.  Physically, photolysis of tropospheric O3 by light at wavelengths 

below 336 nm to form excited state O(1D) and subsequent reaction with H2O to form OH is a loss pathway for O3.  365 

Therefore, more UV flux will tend to decrease tropospheric O3 concentrations while increasing OH, and vice versa.  This 

physical mechanism, then, can explain the frequent cancellation of the Δ𝜏"#$ values attributed to these two factors.  Should a 

modeler attempt to alter a model’s OH field by forcing adjustments in its JO1D, the opposing impact of tropospheric O3 may 

result in no change for the value of 𝜏"#$.  However, this does not preclude the finding that both JO1D and tropospheric O3 

are substantially different in the models for reasons we do not fully understand.  Tropospheric O3 can also vary between 370 

models for reasons external to the radiative environment.  For instance, differences in the stratosphere-troposphere exchange, 

wet and dry deposition, and lightning NOx emissions can each cause substantial variations in tropospheric O3 among models 

(Wild, 2007).  Further parsing of the reasons for the O3 differences seen among the CCMI models is difficult without 

specialized output, including tracers such as ozone of stratospheric origin and NOx generated by lightning.  We recommend a 

targeted study to address the underlying reasons for the variations in tropospheric O3. 375 

The other qualification concerns the issue of causation versus correlation.  Machine learning techniques, and NNs in 

particular, are generally more adept at identifying the predictors of a certain phenomenon than traditional methods, such as 

multiple linear regression.  However, it is still possible that an input that is tightly correlated with the output may be 

misidentified as a driver of variations in the output.   This is particularly relevant to keep in mind for species that serve as 
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sinks of OH, such as CO and CH4.  Whether a decline in OH initiates or results from an increase in its sinks is difficult to 380 

differentiate, even with advanced analysis methods.  Therefore, descriptions of CO and CH4 as drivers of OH variations in 

this text may just as well be interpreted conversely, as downstream indicators of the change in oxidizing capacity. 

4.3 Time series evaluation 

The second half of our NN analysis interrogates temporal trends in OH and 𝜏"#$.  Figure 6 shows the evolution of 𝜏"#$ in 

the SD-type simulations conducted for 1980-2010.  Two models, GEOS-Chem and OsloCTM, only provided output for year 385 

2000, and so only appear as single points in Fig. 6.  In addition, some models provided output beyond year 2010; output 

from years through the end of 2015 was included when available.  The lifetimes all show a general downward trend over 

time, consistent with the upward trend in global mean tropospheric OH concentration shown by Zhao et al. (2019) (their 

figure 4). 

Swaps of input variables to a NN are conducted on an intra-model basis, with the goal of determining which OH precursors 390 

and sinks are responsible for OH variations over time.  The results of these swaps are shown for each model in Figure 7.  

Changes in 𝜏"#$ attributable to each parameter are displayed as a function of year.  Because we use the same NNs 

established for the inter-model comparison described in Section 3.2 trained on output from year 2000, the values of Δ𝜏"#$ 

for all species in year 2000 of Fig. 7 is zero by design.  As an input field from another year is swapped into the NN, however, 

OH differences manifest and are denoted by the corresponding change in 𝜏"#$. 395 

While significant diversity in the drivers of OH variability across models is evident from Fig. 7, there are also several 

distinctive features that appear repeatedly.  For instance the response of 𝜏"#$ to changes in CO shows a prominent peak in 

year 1998 in all models except one.  To gauge the role of emissions in this response, we show in Supplemental Figures S2-6 

the time series of CO mixing ratios and other parameters averaged for the region most impactful to 𝜏"#$: the tropical lower 

troposphere (latitudes between 30°S and 30°N, pressures greater than or equal to 700 hPa).  Indeed, CO mixing ratios 400 

maximize in almost all models in year 1998, likely as a result of the emissions inventory reflecting the extreme biomass 

burning and strong El Niño Southern Oscillation (ENSO) event during that and the preceding year (Duncan et al., 2003 and 

references therein).  The increase in 𝜏"#$ can thus be explained by the increased CO sink of OH, causing a temporary 

depletion of the oxidant.  In addition, less distinctive peaks in 𝜏"#$ due to CO are identified in other years with strong El 

Niño conditions, notably 1982-1983, 1987, and 1991-1992 (Duncan et al., 2003) . 405 

The impacts of several other variables on 𝜏"#$ also demonstrate behaviour with reasonably identifiable causes.  A prolonged 

decrease in 𝜏"#$ due to JO1D from 1992 to 1998 is evident in the analysis of the CAM4-Chem, GEOS Replay, GMI, MRI-

ESM1r1, and WACCM NNs.  This corresponds with both the eruption of Mount Pinatubo in 1991 and the prolonged ENSO 

event of 1990-1995 (Allan & D’arrigo, 1999; Duncan et al., 2003) .  The former event likely impacted JO1D through the 
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decrease in stratospheric O3 that resulted (Aquila et al., 2013; Tie and Brasseur, 1995), while the latter caused reduction in 410 

cloud cover due to drought conditions (Duncan et al., 2003).  Both effects will tend to increase the flux of UV light to the 

troposphere, increasing the primary production of OH and decreasing 𝜏"#$, as seen in Fig. 7.  Interestingly, the 𝜏"#$ response 

to H2O is moderately anticorrelated with CO.  This is particularly evident for year 1998 in many of the models, when the 

biomass burning mentioned above was driven specifically by El Niño conditions.  Although a strong El Niño causes drought 

conditions over some regions, it is more fundamentally associated with warming sea surface temperatures and increased 415 

evaporation, particularly in the tropical Pacific Ocean.  Thus, it is reasonable that larger values of specific humidity will tend 

to increase OH primary production during an El Niño year, as suggested by the decrease in 𝜏"#$ shown in Fig. 7.  An 

apparent increase in O3 also coincides with the 1998 ENSO event, determined by the decreasing component of 𝜏"#$.  The 

prevalence of biomass burning would indeed cause increases in tropospheric O3 through increased emissions of its 

precursors, CO, VOCs, and NOx.  Additionally, the 𝜏"#$ response to O3 shows the most distinguishable trend of all the 420 

variables over the full 1980-2015 period.  Steady decreases in 𝜏"#$ due to O3 imply an increasing tropospheric O3 burden, a 

modelling result supported by observations (Verstraeten et al., 2015). 

We also note the appearance of spurious results in several cases.  The 𝜏"#$ responses to CH4 in EMAC-L47MA and EMAC-

L90MA as well as to O3 COL in MOCAGE extend to very large negative values in the early part of the time series.  

Chemical conditions during the 1980s would differ most markedly from the regimes simulated in year 2000, on which the 425 

NNs are based.  Particularly for concentrations of CH4, which underwent monotonic rise aside from a stabilisation period 

from 2000 to 2007 (Turner et al., 2019), conditions in 1980 could be quite different.  However, as was noted in Section 3.1, 

CH4 inputs to the NNs are normalized against the maximum tropospheric value.  The field of CH4 for each year is likewise 

normalized against the maximum CH4 for that year, so a strong response in 𝜏"#$ must indicate a significant change in the 

distribution of CH4, not just in changes in its concentration over time.  Indeed, Supplementary Figure S7 shows the 430 

normalized CH4 values used as input to the NNs for the pressure level closest to the surface.  For each EMAC configuration 

(for the month in which the 𝜏"#$ response shown in Fig. 7 is largest and most unphysical), the CH4 distributions in the 1980s 

do show notable change from the year 2000 distribution used for training.  Specifically, relative CH4 mixing ratios in the 

Southern Hemisphere drop relative to the larger concentrations in the Northern Hemisphere.  Other models, such as 

WACCM shown in the bottom panels of Fig. S7, show practically no inter-annual change in the CH4 distribution for a given 435 

month.  This behaviour in the EMAC model appears to result from implementation of a Newtonian relaxation scheme to 

determine a time-varying, latitude-dependent lower boundary condition for CH4 (Jöckel et al., 2016) .  Our spurious NN 

result may indeed be explained by a slowdown in the rate of increase in CH4 concentrations at the lower boundary initiated 

in 1980, evident in supplementary figure E1 of Jöckel et al. (2016).  While this method of determining boundary conditions 

generally represents a more sophisticated treatment of CH4, within the context of this analysis, it imparts an artificially 440 

strong signal in OH and 𝜏"#$. 
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For the other occurrence of anomalous behaviour, MOCAGE shows an unrealistically large response of 𝜏"#$ to O3 COL in 

the 1980s (Fig. 7f), a result not corroborated by any other model.  Supplementary Figure S8 illustrates the likely cause of this 

behaviour.  While most models exhibit modest changes in total O3 COL between 1980 and 2000, including GEOS Replay 

shown in the top set of panels, the MOCAGE model (bottom panels) shows much larger column amounts in year 1980.  445 

These values fall well outside the range of O3 COL amounts on which the NN was trained, so unrealistic behaviour of the 

NN in this case is not surprising.  Due to the anomalous NN behaviour in these three cases, the responses to EMAC CH4 and 

MOCAGE O3 COL are excluded from subsequent analysis of the NN time series results. 

Figure 8 shows the multi-model mean attribution of variations in 𝜏"#$.  Many of the same features identified in Fig. 7 also 

emerge here: clear definition of strong ENSO years in the CO response, apparent Mt. Pinatubo effects in the JO1D response, 450 

and a general downward trend in 𝜏"#$ due to O3 are all observed.  Also, as might be expected from the inter-model 

comparison results discussed in the prior section, JO1D, O3, NOx, H2O, and CO account for many of the strongest OH 

variations over time (Fig. 7) as well as between models (Fig. 5). 

We also perform linear fits to each response time series in Fig. 8.  The resulting trends in 𝜏"#$ are shown in Figure 9, panel 

(a).  The interannual variability of 𝜏"#$ is also calculated as the standard deviation of the detrended time series, shown in Fig. 455 

9b.  Negative trends in 𝜏"#$ due to H2O, JO1D, NOx, and O3 stand out as largest in magnitude.  The sum of all factors shown 

in Fig. 9a is –1.9% decade–1, which is comparable to the mean downward trend in 𝜏"#$ seen in Fig. 6, –1.8% decade–1.  Time 

series of the model input variable fields show corresponding trends, with parameters that serve as source terms of OH 

increasing over time (Supplemental Figures S2-5).  Tropospheric O3 and NOx show clear upward trends over time, while 

H2O and JO1D show upward trends with more variability, which is also conveyed by the error bars in Fig. 9a.  The 460 

interannual variability attributed to CO in Fig. 9b is also consistent with the large year-to-year swings in tropical lower 

tropospheric CO mixing ratios shown in Supplemental Figure S2.  While Fig. 9a suggests that CO exhibits very little overall 

trend between 1980 and 2015, we note there is a discernible increase in CO prior to ~1998 in Fig. S2 followed by a steady 

decline thereafter.  This is consistent with remote site measurements that show significant negative trends in CO since the 

late 1990s (Zeng et al., 2012). 465 

Finally, the attributed trends in 𝜏"#$ from the CCMI models (Fig. 9a) are compared in Figure 10 to trends in tropospheric 

mean OH concentration (“[OH]TROP”) from a previous observation-based analysis (Nicely et al., 2018).  In that work, 

TOMS/OMI/SBUV observations of total column O3 were used to infer radiative effects on the OH burden, while water vapor 

from the AIRS instrument, CH4 from surface observations, NOx from a global model simulation constrained to realistic 

emissions, and temperature from the MERRA-2 reanalysis were analysed to calculate chemical impacts on [OH]TROP.  In 470 

Nicely et al. (2018), the trend in [OH]TROP due to NOx encompassed the effects of both the total abundance and the 

partitioning of NOx, while the O3 COL factor encompassed all radiative effects on OH.  Thus, to perform a “like for like” 
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comparison, the 𝜏"#$ trends due to NOx and NO:NOx are combined, as are the trends due to O3 COL and JO1D shown in Fig. 

9a.  Error bars shown in Fig. 10 represent the 1𝜎 uncertainty in the slope of the linear fit and, in the case of combined trends, 

are found by summing in quadrature the individual uncertainties.  Because 𝜏"#$ varies with the inverse of OH concentration, 475 

note that the x-axis of Fig. 10 is inverted and a –1:1 line is shown in grey. 

The trends in 𝜏"#$ from this analysis and in [OH]TROP from Nicely et al. (2018) are in reasonably good agreement for H2O, 

NOx, O3 COL, and temperature.  In particular, the two trends due to H2O agree within the uncertainties, with 𝜏"#$ decreasing 

by ~0.5 % decade–1 and [OH]TROP increasing at almost the same rate.  The impacts of NOx and O3 COL are found to increase 

OH concentrations in both studies, though the impacts on 𝜏"#$ from the CCMI models are found to be larger in magnitude 480 

than the observational estimate.  The small impact of temperature, tending to lessen the OH burden, is also in close 

agreement between the two studies, with the CCMI models again showing a slightly stronger response.  The response of OH 

to CH4 however, is in poor agreement between the two studies.  The previously determined observation-based estimate of 

[OH]TROP trend due to CH4 was –1.01±0.05 % decade–1 while the CCMI model-based trend in 𝜏"#$ is only +0.06±0.07 % 

decade–1.  On one hand, the treatment of CH4 as a normalized value within the NN analysis, as noted above in the discussion 485 

of Fig. 7, precludes a realistic estimate of the OH response to changes in CH4.  Rather, the trend estimate calculated by the 

NN analysis of CCMI models represents the impact on OH of changes in the distribution of CH4 within the troposphere.  

Since the source regions of CH4 are not expected to change substantially over the 1980-2015 period, it is not surprising that 

the CCMI model-based trend is small.  Meanwhile, the other estimate of the [OH]TROP trend due to CH4 from Nicely et al. 

(2018) is not without limitations.  As was acknowledged in that paper, the box model method used to estimate the 490 

sensitivities of OH to CH4 (among other species) is inherently inadequate for capturing complex coupling of chemical 

systems and downstream effects.  For example, the box modelled sensitivity of OH to variations in CH4 were found for a 

range of latitude, pressure, and NOx values (since the latter determines whether CH4 oxidation consumes or regenerates OH 

radicals).  To maintain the characteristics of those chemical regimes, then, O3 was input and held fixed in the box model 

simulation.  As a result, especially in the relatively low-NOx conditions prevalent throughout much of the troposphere, an 495 

increase in CH4 would tend to consume OH without the corresponding increase in O3 expected to result from greater CH4 

oxidation.  That increase in tropospheric O3 would offset some of the OH loss by increasing primary production, a process 

that should be captured in a fully coupled chemistry-climate model like those participating in CCMI. 

We encourage the further examination of the response of OH to CH4, known as the CH4 feedback, on the global scale.  This 

topic has been of interest for some time (Holmes et al., 2013; Prather et al., 2001), though the necessity of providing 500 

boundary conditions for surface CH4 rather than fluxes in models hampers our ability to realistically simulate CH4.  

Regardless, a model approach using fully-coupled tropospheric chemistry, such as that performed by Holmes et al. (2013) 

for three CTMs, would provide a more direct measure of the CH4 feedback on OH than both approaches depicted in Fig. 10.  
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Except for trends attributed to CH4, the results depicted in Fig. 10 show relatively robust findings regarding the responses of 

[OH]TROP and 𝜏"#$ to the factors examined through two independent studies. 505 

5 Conclusions 

We perform a neural network analysis of the monthly mean output from historical simulations of ten models that participated 

in CCMI for the purposes of understanding OH and 𝜏"#$ differences and temporal trends.  NNs are trained to reproduce OH 

mixing ratios for a given model using 3-D fields of 12 OH precursor and sink parameters.  Performing swaps of the NN 

inputs between models produces a quantitative estimate of the difference in 𝜏"#$ that can be attributed to variations in the 510 

substituted variable.  Among the ten models that we examine, on average, variations in JO1D, local O3, NOx, and chemical 

mechanisms account for the largest differences in 𝜏"#$.  Model diversity in representations of H2O, CO, the partitioning of 

NOx, and HCHO is responsible for moderate OH differences, while isoprene, CH4, JNO2, overhead O3 column, and 

temperature account for little-to-no variation in OH.  However, the relative importance of a particular variable is highly 

model-dependent, so any effort to improve the representation of OH within a given model should be guided by that particular 515 

model’s results. 

We also analyse time series of 𝜏"#$ using the year 2000 NNs generated for the first half of the study.  All models exhibit a 

downward trend in 𝜏"#$ between 1980 and 2015, varying from –0.54 % decade–1 to –2.97 % decade–1 (average of –1.83 % 

decade–1).  Swaps of NN inputs are conducted between years rather than between models, so attributions of the factors 

influencing trends in 𝜏"#$ are found for each model and then combined into a multi-model mean result.  This analysis 520 

indicates that the largest contributors to the decreasing trend in 𝜏"#$ are O3, JO1D, NOx, and H2O, while CO also imparts a 

large degree of interannual variability.  Features due to strong ENSO events and associated biomass burning as well as the 

eruption of Mount Pinatubo are discernible in the time series of attributed variations in 𝜏"#$.  In particular, the species CO, 

H2O, and O3 instigate prominent responses during strong El Niño years.  Finally, the attributed trends in 𝜏"#$ from the NN 

analysis of CCMI model output are compared to trends in tropospheric mean OH concentration found previously in the 525 

observation-based study of Nicely et al. (2018).  While the strong response of 𝜏"#$ to increasing H2O over time appears to be 

a robust result, disagreement on the CH4 feedback on OH between the two studies highlights limitations in the approaches of 

both, in addition to more systemic issues in the community’s ability to model CH4. 

The NN and machine learning methods in general provide a valuable tool for performing insightful model intercomparisons 

of complex systems in a computationally-efficient manner.  These approaches, however, must be undertaken with care to 530 

avoid erroneous results and recognition of their limitations.  At present, we have devised a method to identify the drivers of 

OH variations, whether between models or between years, at coarse temporal resolution.  Much future work is needed, 

though: observations must be incorporated to introduce a ground truth element to this analysis in a manner that either adjusts 
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for or avoids disconnects between coarse versus local/instantaneous spatiotemporal scales and appropriately accounts for 

measurement uncertainty; an analysis of model output with much higher temporal frequency is needed to identify exactly 535 

where model differences in chemical mechanisms lie; and subsequent studies of why the various OH precursor and sink 

fields differ are required to make this analysis of greatest utility for improving model representations of 𝜏"#$.  While these 

challenges are significant, they are not insurmountable, especially as machine learning and other advanced statistical analysis 

techniques continue to be developed and honed. 

Data Availability 540 

All output from most of the models that participated in CCMI is available at the Centre for Environmental Data Analysis 

(CEDA), the Natural Environment Research Council’s Data Repository for Atmospheric Science and Earth Observation, at 

http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output.  WACCM and CAM4-Chem output for CCMI is available for 

download at http://www.earthsystemgrid.org.  For instructions for access to both archives see 

http://blogs.reading.ac.uk/ccmi/badc-data-access.  Output from the models that were not formal participants in CCMI Phase 545 

1 is available from the co-authors who performed the model simulations; please contact the corresponding author with 

requests.  A complete set of figures and tables generated by the model intercomparison and time series analyses is available 

at the FTP site https://acd-ext.gsfc.nasa.gov/anonftp/acd/atmos/jnicely/.  In the event that this site is no longer active, please 

contact the corresponding author for access to all results. 
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Table 1.  Accounting of CH4 lifetime differences between GMI and OsloCTM simulations for January, 2000. 

  GMI OsloCTM 
𝜏"#E,5=>? a (year)  9.24 7.18 
Δ𝜏"#E due tob: O3 –0.91 +0.79 

 JO1D –0.59 +0.60 
 HCHO –0.64 +0.51 
 NOx –0.45 +0.33 
 JNO2 –0.34 +0.15 
 Isoprene –0.03 +0.28 
 CO +0.19 –0.07 
 H2O +0.10 –0.13 
 CH4 +0.11 –0.06 
 NO/NOx +0.07 –0.05 
 O3 COL –0.02 –0.06 
 T –0.02 +0.00 

Δ𝜏"#E,G5Gc  –2.52 +2.30 
𝜏"#E,5=>? + 	Δ𝜏"#E,G5G   6.71 9.48 

Mech.d  +0.47 –0.24 
a𝜏"#E,5=>?  represents value of 𝜏"#E evaluated directly from the model. 
b	Δ𝜏"#E calculated from output of NN when noted variable is substituted with values from the 
other model. 
cSum of all Δ𝜏"#E values calculated for each input substitution. 
dRemainder of original 𝜏"#E difference not accounted for by NN substitutions; calculated as 
𝜏"#E,5=>?(model A) – [𝜏"#E,5=>?(model B) + Δ𝜏"#E,G5G(model B)]. 
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 740 

Figure 1.  Architecture for neural networks generated in this study.  Blue boxes designate inputs (left) and output (right), red 
triangles indicate bias terms, green circles indicate nodes at which activation functions are performed, and grey arrows represent 
the weighting terms, which are optimized through the training process.  For full details of the neural network setup and training, 
we refer readers to Nicely et al. [2017].  Although 15 nodes are shown here in each hidden layer, 30 were actually used for all NNs 
in this study. 745 
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Figure 2.  Seasonal variation in CH4 lifetime for year 2000 for the CCMI specified dynamics (REF-C1SD) and chemical transport 
model simulations. 

750 
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Figure 3.  Tropospheric OH columns for the WACCM model REF-C1SD simulation, January 2000.  (a) Columns calculated 
directly from the WACCM output; (b) columns calculated from the output from the WACCM January NN run with inputs from 
the native model; (c) difference in column values, (NN – model).  Methane lifetime values calculated from 3-D OH fields from 
WACCM and from the WACCM NN are inscribed in panels (a) and (b), respectively.  The methane lifetime difference, (NN – 755 
model), is noted in panel (c). 
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Figure 4.  Changes in tropospheric OH column resulting from swap of indicated variable from another model into the NN of the 760 
native model for the specified dynamics simulation of January, 2000.  Swaps of the inputs O3 (a, b), J(O3àO1D) (c, d), HCHO (e, 
f), and NOx (g, h) are shown for the GMI (left) and OsloCTM (right) NNs.  
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Figure 5.  Averaged changes in CH4 lifetime accrued for a specified model (color), across all swaps of the indicated variable (x-
axis) from all other models.  Results are shown annually averaged for year 2000 of the specified dynamics REF-C1SD CCMI and 765 
chemical transport model simulations.  Circle indicates the mean change in CH4 lifetime; bars represent the 1𝝈 standard deviation 
from all model pairings.  Variables along the x-axis are ranked by averaged magnitude of the 𝜟𝝉𝑪𝑯𝟒 values (i.e., inputs located 
farther left are responsible for larger differences in CH4 lifetime), except for the “Mech.+Nonlin.” term, which is shown last to 
indicate its role as a remainder term.  Model name abbreviations are “CAM4” for CAM4-Chem, “EM47” for EMAC-L47MA, 
“EM90” for EMAC-L90MA, “GRep" for GEOS Replay, “GCHM” for GEOS-Chem, “GMI” for GMI, “MOC” for MOCAGE, 770 
“MRI” for MRI-ESM1r1, “OSLO” for OsloCTM, and “WACC” for WACCM. 
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Figure 6.  Time series of CH4 lifetime from REF-C1SD models.  Only one year of output was available for two models (OsloCTM 775 
and GEOS-Chem), so their results are shown only as a single data point at year 2000. 
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Figure 7.  Attributions of changes in CH4 lifetime relative to year 2000 of the REF-C1SD simulations.  Within the NN of a given 780 
model, use of individual inputs (indicated by color) from years other than 2000 result in a change and OH and subsequent CH4 
lifetime, shown here. 
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Figure 8.  Same as Figure 7, but the average across all eight models, except with the CH4 line from EMAC-L47MA and EMAC-
L90MA and O3 Column from MOCAGE removed. 
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Figure 9.  Multi-model mean linear trend (a) and interannual variability (b) in 𝝉𝑪𝑯𝟒 attributed to each variable examined through 
the NN method. 
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Figure 10.  Comparison of the attributed trends in 𝝉𝑪𝑯𝟒 found in this work according to the REF-C1SD simulations performed for 
CCMI (y-axis) to the attributed trends in tropospheric mean OH (“[OH]TROP”) found based on observations in Nicely et al. [2018].  
The grey dashed line indicates the –1:1 line, as values should be anti-correlated.  The 𝝉𝑪𝑯𝟒 trend numbers from this work for NOx 
combine the NOx total abundance and partitioning (NO/NOx) values from Figure 9, and for O3 Column combine the J(O1D) and 800 
O3 Column values, as both effects are encompassed in the determination of [OH]TROP. 
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